crystallization papers

Acta Crystallographica Section D Biological Crystallography ISSN 0907-4449

Kazunari Yoneda,^a Tomohiro Nishimura,^a Nobuhiko Katunuma,^a Shigeyuki Imamura,^b Katsutoshi Nitta^c and Hideaki Tsuge^a*

^aInstitute for Health Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8054, Japan, ^bDiagnostic Research and Development, Diagnostic Division, ASAHI KASEI Corporation, 632-1 Mifuku, Ohito, Shizuoka 410-2321, Japan, and ^cDivision of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan

Correspondence e-mail: tsuge@tokushima.bunri-u.ac.jp

Crystallization and preliminary X-ray crystallographic studies of monoacylglycerol lipase of the moderately thermophilic *Bacillus* sp. H-257

Thermostable monoacylglycerol lipase (MGLP; EC 3.1.1.23) from the moderately thermophilic *Bacillus* sp. H-257 has a unique substrate specificity. It hydrolyzes monoacylglycerols but does not hydrolyze di- or triacylglycerols. Crystals of the enzyme were obtained by the hanging-drop vapour-diffusion method using ammonium sulfate as a precipitant and benzamidine as an additive. The orthorhombic crystals belong to the space group $P2_12_12_1$, with unit-cell parameters a = 43.53, b = 100.82, c = 108.17 Å. The crystals diffract to at least 2.3 Å resolution and a native data set has been collected to 2.6 Å resolution on a CCD detector using synchrotron radiation.

1. Introduction

Lipase (triacylglycerol lipase; EC 3.1.1.3) hydrolyzes triacylglycerols to diacylglycerols, monoacylglycerols, fatty acids and glycerol. Lipase, which is widely distributed in animals, plants and microorganisms, is important and is useful in various industrial fields as a biocatalyst. There are many studies of di- and triacylglycerol lipases (Chahinian et al., 2000; Moriyama et al., 1999; Lee & Severson, 1994); however, only limited information on a specific monoacylglycerol lipase is available. We have purified the MGLP consisting of 250 amino acids produced by the moderately thermophilic Bacillus sp. strain H-257 and reported its enzymatic properties (Imamura & Kitaura, 2000), molecular cloning, sequencing and expression in Escherichia coli (Kitaura et al., 2001). This MGLP hydrolyzes monoacylglycerols; however, it does not hydrolyze di- and triacylglycerols to an appreciable extent. The enzyme is thermostable up to 333 K and should be useful for analytical purposes such as the measurement of serum lipase levels and the analysis of monoacylglycerols in food.

Several lipase structures have been elucidated (Jaeger *et al.*, 1999) and all have an α/β hydrolase fold, with most lipases containing a helical segment called the lid that covers the active site. Bacterial lipases and esterases are currently classified into eight families based on their amino-acid sequences and fundamental biological properties (Arpigny & Jaeger, 1999). It appears that MGLP could not be assigned to any of these families of lipases because of its lack of sequence similarity. Here, we report the crystallization and preliminary X-ray crystallographic analysis of monoacylglycerol lipase from the moderately thermophilic *Bacillus* sp. H-257, with the aim of determining Received 7 January 2002 Accepted 8 April 2002

its three-dimensional structure in order to clarify the molecular mechanism of monoacylglycerol lipase and its molecular evolution.

2. Materials and methods

2.1. Crystallization and preliminary X-ray diffraction analysis

Production and purification of recombinant MGLP was carried out as described previously (Imamura & Kitaura, 2000). The enzyme solution (12 mg ml⁻¹) from freeze-dried enzyme including mannitol was dialyzed against 10 mM Tris buffer pH 7.5. Crystallization was carried out by the hanging-drop vapour-diffusion method. A sample solution was prepared by mixing 90 μ l of 12 mg ml⁻¹ protein with 18 µl of 20% benzamidine. 2 µl of the sample solution was mixed with 2 µl of a precipitant solution containing 1.5 M ammonium sulfate, 100 mM citrate pH 5.8 and 0.17 M tartrate. The diffraction data were measured at room temperature from a single crystal placed in a thin-walled glass capillary tube using an ADSC Quantum4R CCD detector system (Area Detector Systems, Poway, CA) on the BL-6A beamline at the Photon Factory. The data sets were processed using DPS/MOSFLM (Rossmann & van Beek, 1999) and SCALA (Collaborative Computational Project, Number 4, 1994).

3. Results and discussion

3.1. Crystallization

Commercially available screens were used to determine the initial crystallization conditions (Hampton Research, USA). An oil-like precipitate was observed using 2.0 *M* ammonium sulfate and $5\%(\nu/\nu)$ 2-propanol as a precipitant

© 2002 International Union of Crystallography

Printed in Denmark - all rights reserved

Figure 1

Aggregates of MGLP crystals. A single crystal of good diffraction quality was cut from the aggregate.

Figure 2 Self-rotation function using native data of MGLP. Two large peaks corresponding to a non-crystallographic twofold axis were observed.

solution. Needle-shaped crystals, which were subsequently optimized, were observed using 1.5 *M* ammonium sulfate, 100 m*M* citrate pH 5.8 and 0.17 *M* tartrate as a precipitant solution and 20% benzamidine hydrochloride as an additive. Crystals were obtained at 277 K and took two weeks to reach maximal size. As the crystals grew as aggregates (Fig. 1), a single crystal was cut from the aggregates to obtain a diffractionquality crystal. The usual size of a single crystal was $0.05 \times 0.1 \times 0.1$ mm. Benzamidine was essential for crystallization. It can be hypothesized that benzamidine binds the MGLP as well as a serine protease (Brady *et al.*, 1990). However, it did not inhibit the enzyme activity.

3.2. Preliminary X-ray diffraction analysis

The diffraction data sets were collected at 279 K using synchrotron radiation $(\lambda = 1.00 \text{ Å})$. One crystal was used to collect a native data set to 2.6 Å. These crystals belonged to the orthorhombic space group $P2_12_12_1$, with unit-cell parameters a = 43.53, b = 100.82, c = 108.17 Å. A summary of data statistics is shown in Table 1. The native data were analyzed *via* a self-rotation function

search using the program POLARRFN from the CCP4 program package. The strongest peak (peak value 59.8) apart from the origin peak on the twofold section ($\kappa = 180^\circ$) was observed at $\omega = 45$ or 135, $\varphi = 90^{\circ}$ (Fig. 2) and implies the presence of a dimer of MGLP which has a non-crystallographic twofold axis. Assuming the presence of two molecules in the asymmetric unit, $V_{\rm M}$ is 2.09 \AA^3 Da⁻¹ and the solvent content is 40.7% (Matthews, 1968).

A search for heavy-atom derivatives is under way for use in multiple isomorphous replacement phasing. Sequence similarity was found with a carboxyesterase precursor of *Bacillus stearothermophilus* and a putative esterase/lipase of *Streptomyces coelicor* as described elsewhere (Kitaura *et*

al., 2001). The Ser residue, one of the activesite residues, is located within a semiconserved pentapeptide, either G(A)-X-S-X-G or G-X-S-X-S, where X indicates any amino acid. The conserved pentapeptide was found in MGLP (95-GLSMG-99); however, two other active-site residues (His and Asp) have not been identified because of the low sequence similarity between MGLP and other lipases. A detailed overview of the α/β hydrolase fold in lipase has been given by Schrag & Cygler (1997). All bacterial lipase structures known to date demonstrate the α/β hydrolase fold, with some variation. The

crystallization papers

Table 1 Data-collection statistics of MGLP.

Beam source	Photon Factory BL6A
Detector	ADSC CCD
Wavelength (Å)	1.0
Number of crystals	1
Space group	$P2_{1}2_{1}2_{1}$
Unit-cell parameters (Å)	a = 43.53, b = 100.82,
	c = 108.17
Total No. of observations	85371
No. of unique reflections	21446
Resolution range (Å)	40-2.6
Completeness (%)	98.4
R_{merge} (%)	12.1
Multiplicity	4.0

MGLP structure may also have a similar α/β hydrolase fold; however, we expect that elucidation of the structure will provide a new insight into the unique substrate specificity of this enzyme.

We thank M. Suzuki, N. Igarashi and N. Sakabe at KEK-PF for assistance with data collection. HT is a guest researcher of TARA (Tsukuba Advanced Research Alliance). This work was partly supported by TARA, High Technology Research Center and Bio Venture Center of Tokushima Bunri University.

References

- Arpigny, J. L. & Jaeger, K. E. (1999). *Biochem. J.* **343**, 177–183.
- Brady, L., Brzozowski, A. M., Derewenda, Z. S., Dodson, E., Dodson, G., Tolley, S., Turkenburg, J. P., Christiansen, L., Hugh-Jensen, B., Norskov, L., Thim, L. & Menge, U. (1990). *Nature* (London), 343, 767–770.
- Chahinian, H., Vanot, G., Ibrik, A., Rugani, N., Sarda, L. & Comeau, L. C. (2000). Biosci. Biotechnol. Biochem. 64, 215–222.
- Collaborative Computational Project, Number 4 (1994). Acta Cryst. D50, 760–763.
- Imamura, S. & Kitaura, S. (2000). J. Biochem. 127, 419–425.
- Jaeger, K. E., Dijkstra, B. W. & Reetz, M. T. (1999). Annu. Rev. Microbiol. 53, 315–351.
- Kitaura, S., Suzuki, K. & Imamura, S. (2001). J. Biochem. **129**, 397–402.
- Lee, M. W. & Severson, D. L. (1994). *Biochem. J.* **298**, 213–219.
- Matthews B. W. (1968). J. Mol. Biol. 33, 491–497. Moriyama, T., Urade, R. & Kito, M. (1999). J.
- Biochem. 125, 1077–1085.
- Rossmann, M. G. & van Beek, C. G. (1999). Acta Cryst. D55, 1631–1640.
- Schrag, J. D. & Cygler, M. (1997). Methods Enzymol. 284, 85–107.